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Complete genome sequence of iron-oxidizing Stutzerimonas 
stutzeri strain FeN3W isolated from Catalina Harbor sediment
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ABSTRACT Stutzerimonas stutzeri strain FeN3W is an iron-oxidizing bacterium isolated 
from marine sediment. FeN3W’s 5.9 Mb genome encodes complete pathways for 
glycolysis, gluconeogenesis, TCA cycle, pentose phosphate pathway, and aerobic and 
anaerobic (nitrate) respiration. The genome contains 32 putative heme-binding proteins 
predicted to localize to the cell envelope.
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M icrobial mineral oxidation is an important biogeochemical process in marine 
sediment ecosystems (1–3); however, the metabolic processes conferring the 

capacity for extracellular electron uptake from solid-phase minerals remain poorly 
characterized (4, 5). We report the complete genome sequence of Stutzerimonas stutzeri 
strain FeN3W, an elemental iron and poised cathode-oxidizing bacterium (2).

Coastal sediments were collected via 30 cm push cores from Catalina Harbor, CA 
(33° 25.23′ N, 118° 19.42′ W) in February 2013. FeN3W was electrochemically enriched 
from homogenized sediment cores and subsequently isolated on solid minimal marine 
media supplemented with elemental iron and sodium nitrate, as previously described 
(2). FeN3W was grown from glycerol stock in LBS+Ions broth (25 g/L Miller LB, 10 g/L 
NaCl, 3 g/L MgCl2•6H2O, and 0.15 g/L CaCl2•2H2O) overnight at 30°C and 200 RPM. DNA 
was extracted from a cell pellet with the DNeasy PowerSoil DNA Isolation Kit (Qiagen, 
Germantown, MD) and that sole extract was used for both Illumina and Nanopore 
sequencing. Briefly, Illumina libraries were prepared with the Illumina DNA Prep Kit, 
barcoded with 10 bp UDI indices, and sequenced on an Illumina NovaSeq (2 × 151 bp 
sequencing) at SeqCenter LLC (Pittsburgh, PA). Demultiplexing, quality control, and 
adapter trimming were performed with bcl-convert 4.0.3 (6). Long-read sequencing 
libraries were prepared with the Native Barcoding 24 V14 Kit (ONT, Oxford, UK) without 
shearing or size selection and sequenced using a R10.4.1 flow cell (FLO-MIN114) under 
high accuracy mode (280 bp/s) with a MinION sequencing device in-house. Basecall­
ing, adaptor trimming, and default quality filtering were conducted with Guppy 6.4.6 
(7). Illumina reads were not filtered due to an average Phred score of 36 per read 
as determined by fastQC 0.11.5 (8). Long reads were filtered using Filtlong 0.2.1 (9), 
removing reads <5,000 bp and the lowest quality reads comprising 10% of all sequenced 
bases. Long-read sequences were assembled de novo using Flye 2.9.1 (10). Illumina reads 
were aligned to the assembly using Burrows-Wheeler Aligner 0.7 (11) and polished using 
Pilon 1.24 (12) with the parameter—fix all for three rounds total. Assembly quality was 
determined using CheckM 1.0.18 (13) and QUAST 4.4 (14). The assembly was annotated 
with NCBI’s PGAP 6.6 (15). Taxonomy was determined using GTDB-tk 2.2.5 (16). Potential 
metabolic pathways were identified using KEGG’s GhostKOALA tool 2.0 (17). Proteins 
containing putative heme-binding motifs (CX2–4CH) were identified via Prosite (18, 19), 
and their localizations were predicted with PSORTb 3.0.3 (20). Default parameters were 
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used unless otherwise noted. Computing resources were supplied and maintained by the 
Ohio Supercomputer Center (21) and the DOE Systems Biology Knowledgebase (22).

The FeN3W genome is comprised of a 4.99 Mb chromosome and 0.91 Mb plasmid, 
with a G+C content of 60.41% (Table 1). Flye 2.9.1 (10) indicated both assemblies were 
circular and nonrepetitive. GTDB (16) identified the nearest neighbor as S. stutzeri NF13 
(GCF_000341615.1, ANI = 99.41%). FeN3W’s genome encodes complete pathways for 
glycolysis, gluconeogenesis, pentose phosphate pathway, TCA cycle, aerobic respiration, 
and dissimilatory nitrate reduction to ammonia or nitrogen gas. Furthermore, Prosite (18) 
identified 85 proteins with putative heme-binding motifs, of which 32 are predicted to 
localize to the cell envelope.
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TABLE 1 Sequencing statistics for S. stutzeri strain FeN3W

Illumina raw reads accession no. SRR23873165
Nanopore raw reads accession no. SRR23873160
GenBank accession no. CP136010–CP136011
Assembly N50 (bp)a 4,997,791
Nanopore N50 (bp) 13,223
Nanopore total read length (bp) 714,644,844
Illumina total read length (bp) 643,017,490
Illumina paired-end read count 2,152,644
Nanopore read count 100,000
G+C content (%)a 60.41
Estimated genome completeness (%)b 99.88
Estimated genome contamination (%)b 7.7
Estimated Nanopore coverage (x) 121
Estimated Illumina coverage (x) 99
No. of contigs 2
Chromosome length (bp) 4,997,791
Plasmid length (bp) 909,734
No. of protein-encoding genes 5,429
No. of tRNAs 115
No. of rRNAs (5S, 16S, 23S) 4, 4, 4
aDetermined via QUAST 4.4 (14).
bDetermined via CheckM v1.0.18 (13).
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DATA AVAILABILITY

The raw Illumina and Nanopore sequencing reads have been deposited in the 
Sequence Read Archive and are available under accession numbers SRR23873165 and 
SRR23873160, respectively. The complete genome sequence with annotations has been 
deposited in GenBank under accession numbers CP136010–CP136011.
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