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ABSTRACT We report the complete, closed, circular genome of Halomonas sp. strain
FeN2, a metabolically versatile electrotroph that was isolated from Catalina Harbor
sediments. The 4.8-Mb genome contains 4,286 protein-coding genes and has complete
glycolytic, tricarboxylic acid, glyoxylate, pentose phosphate, and reductive pentose
phosphate pathways. FeN2 also contains genes for aerobic and anaerobic (denitrification)
respiration.

Lithotrophic microorganisms play an important role in biogeochemical cycling in ma-
rine sediment ecosystems (1–4). However, their metabolisms remain poorly characterized,

especially those that use solid-phase minerals (5–8). Extracellular electron transfer (EET), the
process by which microorganisms transfer electrons to and from solid-phase surfaces, such as
minerals and electrodes, has been extensively studied in only a fewmodel organisms that pre-
dominantly perform mineral reduction, including Shewanella oneidensis and Geobacter strains
(9). The prevalence and diversity of EET mechanisms involved in mineral oxidation are largely
unknown. Here, we present the complete genome sequence of Halomonas sp. strain FeN2, a
new Halomonas strain isolated for its ability to perform oxidative EET.

Halomonas sp. strain FeN2 was isolated from Catalina Harbor, California, sediment
enrichments (1). FeN2 was cultivated aerobically at 30°C and 200 rpm in LB supplemented
with 175 mM NaCl, 15 mMMgCl2�6H2O, and 1 mM CaCl2�2H2O. DNA for long-read sequencing
was extracted using the DNeasy blood and tissue kit (Qiagen, Germantown, MD). Samples
were barcoded (native barcoding kit 1D; Oxford Nanopore Technologies, Oxford, UK) and pre-
pared for sequencing (ligation sequencing kit 1D). The library was sequenced using a SpotON
flow cell Mk 1 (FLO-MIN106R9). Resulting sequences were base called with Guppy v. 3.0.6
implemented in MinKNOW v. 2.0. Sequence statistics for Nanopore reads were calculated with
NanoStat v. 1.5.0 (10). Nanopore long-read sequences were assembled with Flye v. 2.7 (11). For
Illumina sequencing, genomic DNA was isolated using the DNeasy PowerSoil kit (Qiagen).
DNA libraries were prepared for sequencing using the Nextera XT sample preparation kit (FC-
131-1096; Illumina) and submitted for 2 � 250-bp paired-end sequencing using the Illumina
HiSeq 4000 platform at the University of California, Davis, DNA Technologies Core Facility.
Illumina reads were aligned to the assembly using the Burrows-Wheeler Aligner v. 0.7.17-r1198
(12) and used to polish the long-read assembly using Pilon v. 1.23 (13) with the parameter –fix
all. Three rounds of polishing were conducted. Genome statistics and assembly quality were
determined with QUAST v. 4.4 (14) and CheckM v. 1.0.18 (15). The genome was annotated
using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP). Potential metabolic pathways
were identified using the KEGG BlastKOALA functional characterization tool (16) (https://www
.kegg.jp/blastkoala). Additional proteins involved in sulfur metabolism were identified by
BLASTp v. 2.10.1 (17) as described (18). The nearest neighboring genome was identified with
GTDB-Tk v. 1 (19). Default parameters were used for all software unless otherwise specified.
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The FeN2 genome is approximately 4.8 Mb, with a G1C content of 55.2% (Table 1).
GTDB-Tk identified a draft-quality metagenome-assembled genome of an uncharacterized
and uncultured Halomonas strain (GenBank accession number GCA_002715145.1) (average
nucleotide identity [ANI] of 99.6% and alignment coverage of 65.8%) (20) as the nearest
neighbor. BlastKOALA identified complete sets of genes for the Embden-Meyerhof, Entner-
Doudoroff, tricarboxylic acid, glyoxylate, pentose phosphate, and reductive pentose phos-
phate pathways. Pyruvate decarboxylase (pdc) was absent, but fermentation genes aldehyde
dehydrogenases (aldB and aldH) and alcohol dehydrogenase (adh) were annotated. The ge-
nome encodes succinate dehydrogenase, NADH:quinone oxidoreductase, Na1-translocating
NADH:quinone reductase, terminal cytochrome oxidases o, bd, and cbb3-type, and a bacterial
F-type ATPase. All genes needed for dissimilatory nitrate reduction to ammonia are present
(narGHI and nirBD). All genes required for denitrification are present, except for nitric oxide
(NO)-forming nitrite reductase. BlastKOALA identified a single gene involved in sulfur metab-
olism, i.e., thiosulfate dehydrogenase doxD, but doxA was not identified. Additional putative
sulfur metabolism genes found include fccA (Q06529), soxX (O66187), dsrC (D3RSN6),
soeB (ADC63402.1), hdrB (ADJ22501.1), and several sulfurtransferases, including tusB,
tusC, and tusD. Our analysis of the FeN2 genome provides a valuable reference to support
ongoing bioelectrochemical studies to identify and characterize the genetic basis of oxida-
tive EET and the ecological implications of this process in marine sediments.

Data availability. This study is registered under BioProject accession number
PRJNA726530. The raw Illumina and Nanopore sequencing reads for Halomonas sp. strain
FeN2 have been deposited in the Sequence Read Archive (SRA) and are available under
BioSample accession number SAMN18934492. The complete genome sequence, with anno-
tations, has been deposited in GenBank under accession number CP074200.1.
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