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ABSTRACT The recently proposed bacterial phylum Kiritimatiellaeota represents a
globally distributed monophyletic clade distinct from other members of the Plancto-
mycetes, Verrucomicrobia, and Chlamydiae (PVC) superphylum. Here, we present four
phylogenetically distinct single-cell genome sequences from within the Kiritimatiel-
laeota lineage sampled from deep continental subsurface aquifer fluids of the Death
Valley Regional Flow System in the United States.

Members of the recently proposed bacterial phylum Kiritimatiellaeota (1) (previ-
ously Verrucomicrobia subdivision 5 [2]) are globally distributed and found in

environments such as vertebrate intestines (3), soils (4), and marine environments (1, 5,
6). However, despite their cosmopolitan distribution and prevalence in 16S rRNA gene
amplicon surveys, little is known about the genomic diversity, physiology, and ecology
of these organisms, particularly in deep continental subsurface environments.

To date, a single pure culture representative of the Kiritimatiellaeota (Kiritimatiella
glycovorans L21-Fru-ABT), originally isolated from a hypersaline lake on the Kiritimati
Atoll, has been cultivated and phenotypically and genomically characterized (1, 6). In
line with previous observations of polysaccharide degradation by members of this
group (5), cultivation studies and genomic analysis of K. glycovorans L21-Fru-ABT

suggest that this organism is saccharolytic and derives energy via fermentation (1).
Here, we report four draft single-cell genome sequences representing members of the
Kiritimatiellaeota phylum obtained from a deep, fractured rock aquifer.

Subsurface aquifer water samples were collected with a motor-driven discrete
sampler from an uncased interval at a depth of 752 m below the land surface in BLM1,
an 883.5-m-deep monitoring borehole drilled into Paleozoic carbonates located in Inyo
County, California (36.4004°N, �116.4692°W), in August 2015. The water temperature
was 57.2°C, the pH was 6.92, the electrical conductivity was 2,299 �S cm�1, and the
oxidation-reduction potential was �242 mV. Despite a dissolved oxygen measurement
of 0.43 mg liter�1, the downhole environment was most likely anoxic owing to its
negative oxidation-reduction potential. Raw water samples (1 ml) for single-cell genom-
ics were amended with 5% glycerol and 1� Tris-EDTA (TE) buffer (final concentrations),
frozen on dry ice in the field, and stored at �80°C until cell sorting. Single cells were
sorted, and their genomes were amplified and sequenced at the Bigelow Laboratory for
Ocean Sciences Single Cell Genomics Center as previously described (7). Briefly, cryo-
preserved samples were thawed, prescreened through a 40-�m nylon mesh cell
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strainer (Becton Dickinson, Franklin Lakes, NJ, USA), and incubated with SYTO-9 DNA
stain (Thermo Fisher Scientific, Waltham, MA, USA) at a final concentration of 5 �M for
10 to 60 min. Fluorescence-activated cell sorting was performed with a BD InFlux
Mariner flow cytometer equipped with a 488-nm laser and a 70-�m nozzle orifice
(Becton Dickinson). The cytometer was triggered on side scatter, and the “single-1
drop” mode was used for maximal sort purity. The sort gate was defined based on
particle green fluorescence, light side scatter, and the ratio of green versus red
fluorescence (for improved discrimination of cells from detrital particles). For each
sample, individual cells were deposited into 384-well plates containing 600 nl per well
of 1� TE buffer and stored at �80°C prior to subsequent processing. Of the 384 wells,
317 wells were dedicated for single particles, 64 wells were used as negative controls
(no droplet deposition), and 3 wells received 10 particles each to serve as positive
controls. Cells were lysed, and their DNA was denatured with 5 freeze-thaw cycles, the
addition of 700 nl of lysis buffer (0.4 M KOH, 10 mM EDTA, and 100 mM dithiothreitol),
and a subsequent 10-min incubation at 20°C. Lysis was terminated by the addition of
700 nl of 1 M Tris-HCl at pH 4.

Sequencing libraries were created for each single cell with the Nextera XT DNA
library preparation kit (Illumina, San Diego, CA, USA) with the following modifications:
purification was performed with column cleanup kits (Qiagen, Venlo, the Netherlands),
and library selection was performed with BluePippin (Sage Science, Beverly, MA, USA)
with a target sequence size of 500 � 50 bp. Libraries were sequenced with the NextSeq
500 platform (Illumina) and V1 reagents (2 � 150-bp paired-end sequencing). Raw
sequencing reads for each single amplified genome (SAG) were quality trimmed with
Trimmomatic v0.32 (8), reads with 95% or greater nucleotide identity with the Homo
sapiens reference genome assembly (GRCh38) were removed, and low-complexity
reads (less than 5% of any nucleotide) were removed as described previously (7).
Quality-filtered reads were normalized in silico with kmernorm 1.05 (http://sourceforge
.net/projects/kmernorm) using the settings – k 21 –t 30 – c 3 and subsequently assem-
bled into contigs with SPAdes v3.9.0 (9) with the following settings: – careful –sc
–phred-offset 33. Contig ends (100 bp) were trimmed, and contigs of fewer than
2,000 bp were discarded. Genome completeness and potential contamination were
estimated with CheckM v1.0.8 (10). Predicted genome size was calculated by dividing
assembly size by estimated genome completeness. Assembly quality for each SAG was
determined according to minimum information about single amplified genome
(MISAG) standards (11). Protein-encoding regions were identified with the Rapid An-
notations using Subsystems Technology (RAST) server (12), and genes were annotated
with Koala (KEGG) (13) and InterProScan 5 (14). Average nucleotide identity (ANI) of
reciprocal hits between genome assemblies was calculated using the online ANI
calculator (http://enve-omics.ce.gatech.edu/ani/) (15). Assembly statistics are shown in
Table 1.

Based on the detection of conserved single-copy marker genes in the 3 most
complete SAG assemblies, we predict that BLM1 Kiritimatiellaeota genome sequences
contain 3.8 to 4.2 Mbp. The CheckM-based predicted genome size of the smallest SAG
(AH-151-K23) was 3 times higher than values for the other SAGs. CheckM estimates
genome completeness and contamination of genome assemblies based on the pres-
ence and location of lineage-specific marker genes selected from the phylogenetic
placement (based on single-copy marker genes in the assembly) of the assembly in a
built-in reference genome tree (10). Of the 104 marker genes used by CheckM to assess
genome completeness and contamination for AH-151-K23, only 2 genes were found in
the assembly (threonylcarbamoyl adenosine biosynthesis protein TsaE [accession no.
PF02367] and Holliday junction DNA helicase RuvA [accession no. TIGR00084]), ulti-
mately resulting in 3.4% estimated genome completeness. Furthermore, compared to
the other SAGs, the largest contig size (30 kb) and N50 value (7.7 kb) associated with
AH-151-K23 were �2 to 5 times lower. A combination of the absence of phylogeneti-
cally informative marker genes in the assembly, low genome recovery (small assembly),
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and relatively short contigs contributed to very low genome completeness and high
genome size predictions for this SAG.

All four SAGs had identical 16S rRNA genes and shared greater than 99% average
nucleotide identity. The 16S rRNA gene sequence has 82.7% sequence identity with K.
glycovorans L21-Fru-ABT (GenBank accession no. KC665948) (1), suggesting that these 2
organisms belong to genetically distinct lineages. The SAGs encode a variety of glycosyl
hydrolases, including cellulases (GH5), �-xylosidases (GH39), D-4,5-unsaturated
�-glucuronyl hydrolases (GH88), glucoamylases (GH97), and endo-�-N-acetylgalactos-
aminidases (GH101) as well as many uncharacterized sulfatases. These results suggest
that these organisms may have the capacity for degradation of complex polysaccha-
rides and glycoproteins to obtain carbon, amino acids, and sulfur, as has been previ-
ously suggested for members of this phylum (1). Comprehensive reconstruction of the
metabolic pathways encoded in the SAGs will further deepen our understanding of the
ecology of these unique Kiritimatiellaeota strains in the deep continental subsurface.

Data availability. Raw sequencing reads and genome assemblies for the four SAGs
have been deposited in the EMBL ENA under project no. PRJEB30981. SAG-specific
accession numbers are listed in Table 1. Annotations have been deposited in the Joint
Genome Institute’s Integrated Microbial Genomes and Microbiomes database (JGI
IMG/M) under the accession numbers listed in Table 1.
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TABLE 1 Assembly and quality statistics for BLM1 Kiritimatiellaeota SAGs

Data for SAG:

Assembly statistic AH-151-K23 AH-147-K21 AH-151-C14 AH-151-A22

Raw read accession no. SAMEA5244953 SAMEA5244950 SAMEA5244951 SAMEA5244952
Assembly accession no. CAACVW010000000 CAACVX010000000 CAACVZ010000000 CAACVY010000000
Annotation accession no. 3300022259 3300022272 3300022292 3300022301
No. of raw paired-end reads 9,035,693 4,110,878 8,955,047 7,063,659
No. of quality-filtered paired-end reads 222,128 312,138 731,454 1,107,044
Assembly size (bp) 431,650 688,295 1,629,841 2,632,675
G�C content (%) 61.5 61.6 61.8 62.1
Estimated genome completeness (%)a 3.4 17.4 38.9 69.0
Predicted genome size (Mbp)a 12.52 3.95 4.19 3.82
Estimated contamination (%)a 0 0.7 0.9 0
Genome qualityb Low Low Low Medium
No. of contigs 73 54 161 137
Largest contig (bp) 30,074 56,953 91,734 150,914
N50 value 7,761 20,490 16,267 37,970
No. of protein-coding genes 409 595 1,394 2,191
No. of tRNA genes 5 15 25 39
No. of rRNA genes 4 3 3 3
a Estimated with CheckM v1.0.8 (10).
b Genome quality reported according to Bowers et al. (11).
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