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similarities between the microbial communities of DVRFS recharge and discharge areas supported previously docu-
mented hydraulic connections between: (1) Spring Mountains and Ash Meadows; (2) Frenchman and Yucca Flat
and Amargosa Desert; and (3) Amargosa Desert and Death Valley. However, only a portion of the flow path between
Pahute Mesa and Oasis Valley could be supported by microbial community analyses, likely due to well-associated ar-
tifacts in samples from the two Oasis Valley sites. This study demonstrates the utility of combining microbial data with
hydrologic, geologic, and water-chemistry information to comprehensively characterize groundwater systems, high-
lighting both strengths and limitations of this approach.

1. Introduction

Groundwater plays an essential role in providing water for societal
needs and maintaining ecosystem health. As the global hydrologic cycle
shifts with climate change, groundwater quality and quantity are increas-
ingly affected, necessitating sustainable groundwater-management prac-
tices. These practices require a regional-scale understanding of the
groundwater system. Regional-scale groundwater flow is typically charac-
terized using geologic, water-level, water-chemistry, and aquifer-testing
data (Neuman, 2005; Ye et al., 2016). However, groundwater systems
also are impacted by and serve as distinct habitats for microbial communi-
ties (Chapelle, 2000; Flynn et al., 2013; Griebler et al., 2014). Thus far,
groundwater microbial communities remain an underutilized data source
to understand hydraulic connections between recharge and discharge
areas.

Groundwater flow is governed largely by recharge and discharge rates
and the hydraulic properties of the saturated rocks. Groundwater-flow
paths are derived from hydraulic gradients between areas of recharge
(e.g., precipitation in high topographic regions) and discharge (e.g., springs
in low topographic regions) (Té6th, 1963; Téth, 1999; Freeze and
Witherspoon, 1967). Geologic units also exert control on groundwater-flow
pathways. For example, the juxtaposition of permeable geologic units against
impermeable units downgradient results in a hydraulic barrier to groundwa-
ter flow. The sources of groundwater and travel times along groundwater-
flow paths can be informed by water-chemistry data (Woessner, 2022;
Cook, 2022; Devlin, 2022).

The groundwater microbial community also can be used to characterize
groundwater systems and validate groundwater-flow paths. This concept
dates back to the 1890s when studies began using microbes as tracers to un-
derstand subsurface pathogen transport and to delineate groundwater-flow
paths through injection and recovery experiments (Harvey, 1997). With the
advent of the genomics era and the reducing costs of high-throughput se-
quencing, it may now be possible to use the subsurface microbial commu-
nity to aid in groundwater characterization. Unattached (planktonic)
microbes may be transported through aquifers along groundwater-flow
paths through pore spaces and fractures (Walvoord et al., 1999;
Amalfitano et al., 2014; Zhang et al., 2020). Several abiotic and biotic fac-
tors impact subsurface microbial movement (Ginn et al., 2002; Gerba et al.,
2015), including groundwater-flow rates, hydraulic barriers, pore size, mi-
crobial adhesion processes, and the physiological state of microbial cells.

Subsurface microbial transport may impact microbial community as-
semblages through space and time and could result in more similar or dis-
similar communities. Microbial community assembly can be evaluated
with ecological null models (Stegen et al., 2012, 2013, 2015) (see
Table S1 for terms and definitions used for ecological null models) that
may inform groundwater characterization. For example, high microbial-
dispersal rates (i.e., homogenizing dispersal’) may provide a signature for
tracking hydraulic connections through the co-occurrence of microorgan-
isms in recharge and discharge areas. In contrast, hydraulic barriers may
prevent or impede microbial transport and mixing (‘dispersal limitation’),
such as in the hard-rock aquifers of Brittany (France) (Maamar et al.,
2015), causing microbial communities to diverge over time or along flow
paths through stochastic ecological processes (Zhou and Ning, 2017). Bio-
geochemical and redox conditions also drive community assembly,
selecting for adaptable microorganisms (Maamar et al., 2015; Hug et al.,
2015; Fillinger et al., 2019), and are known as deterministic processes

that occur when conditions are consistent (‘homogeneous selection’) or
fluctuating (‘variable selection’). Consistent environmental conditions
lead to less divergence in the community, whereas fluctuating conditions
can perturb microbial abundances and diversity. Ecological null models
can identify the dominating ecological processes that impact microbial
community assembly between two communities. Along with other analyti-
cal approaches to analyze microbial community data, the groundwater mi-
crobial community could be an advantageous tool to supplement other
geologic and hydrologic datasets to provide a comprehensive understand-
ing of regional groundwater flow.

This study assesses the potential of using subsurface microbial commu-
nity patterns as a supplemental dataset to characterize regional-scale
groundwater flow. The Death Valley Regional Flow System (DVRFS) micro-
bial community was used as a test case because, over the past few decades,
hundreds of boreholes and wells have been drilled in the DVRFS to monitor
water levels and water quality. Thus, the DVRFS provides a unique oppor-
tunity to identify novel microbial community patterns on a regional-scale
and to determine whether microbial community patterns are consistent
with regional-scale groundwater flow-paths (Halford and Jackson, 2020).
The aims of this study were to (1) evaluate the groundwater bacterial and
archaeal community distribution patterns with alpha- and beta-diversity
analyses and network analysis, (2) identify the assembly processes domi-
nating the community patterns using ecological null models, and (3) use
the microbial community patterns and assembly processes to assess any
(dis)similarities along groundwater-flow paths. To achieve these aims, we
collected samples from recharge and discharge areas and hypothesized
that microbial (dis)similarities, co-occurrences, and assembly patterns
may infer and support the most recent groundwater conceptualization
(Halford and Jackson, 2020).

2. Materials and methods
2.1. Site description

The DVRFS is a 100,000 km? region that is part of the Great Basin phys-
iographic province in southern Nevada and California (Fig. 1). The study
area includes three groundwater basins in the DVRFS: Pahute Mesa—Oasis
Valley (PMOV), Ash Meadows (AM), and Alkali Flat-Furnace Creek
Ranch (AFFCR) (Fig. 1) (Halford and Jackson, 2020). The Nevada National
Security Site (NNSS, formerly Nevada Test Site) intersects these three
groundwater basins. Land-surface elevations range from —86 to 3600 m
relative to sea level. Principal geologic units are grouped into four catego-
ries: Paleozoic carbonate rocks, Tertiary volcanic rocks, Cenozoic basin
fill, and undifferentiated, low-permeability siliciclastic and granitic rocks
(Halford and Jackson, 2020).

Long-term water-level and water-quality monitoring have occurred in
the study area. A total of 828 underground nuclear tests were detonated be-
neath the NNSS from 1951 to 1992 (U.S. DOE, 2015). Underground nuclear
testing prompted a long-term U.S. Department of Energy environmental
management program, known as the Underground Test Area (UGTA) Activ-
ity, to assess and monitor potential groundwater transport of radionuclides.
Extensive hydrogeologic investigations (Halford and Jackson, 2020; Moreo
et al., 2003; Moreo and Justet, 2008) also were conducted by the U.S.
Geological Survey to evaluate water levels and groundwater-withdrawal
rates. Several groundwater studies (Halford and Jackson, 2020; Winograd
and Pearson, 1976; Winograd et al., 1998; Thomas et al., 2020, 2013;
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Fig. 1. Map of groundwater basins, locations, sampling sites, and groundwater-flow paths within the study area.

Anderson et al., 2006; Bushman, 2008; Belcher et al., 2009, 2019; Bushman
et al., 2010; Fenelon et al., 2020; Fenelon et al., 2016; Nelson and Mayo,
2014; Warix et al., 2020) have evaluated flow paths in the DVRFS.

This study evaluates groundwater-flow paths using the most recent
groundwater conceptualization of the DVRFS (Halford and Jackson,
2020; Jackson et al., 2021) (Fig. 1). The five regional groundwater-flow
paths evaluated in this study are: (1) Pahute Mesa to Oasis Valley; (2) Spring
Mountains to Ash Meadows discharge area; (3) Frenchman and Yucca Flat
to Amargosa Desert; (4) Rainier Mesa/Yucca Mountain to Amargosa Desert;
and (5) Amargosa Desert to Death Valley (Halford and Jackson, 2020)
(Fig. 1). In the PMOV basin, Pahute Mesa is the primary recharge area con-
tributing to discharge from Oasis Valley (Jackson et al., 2021). In the AM
basin, most recharge is derived from the Spring Mountains and Sheep
Range, with lesser recharge amounts from the Groom, Pahranagat, Desert,
Pintwater, and Spotted Ranges. Groundwater from the Spring Mountains
and other ranges in the AM basin moves southward and westward to

high-volume springs of the Ash Meadows discharge area, the largest oasis
in the Mojave Desert (Laczniak et al., 2001). Groundwater from Yucca
and Frenchman Flats moves into the Amargosa Desert through the well
AD-4 corridor north of Ash Meadows discharge area (Fig. 1). The well

AD-4 corridor hydraulically connects transmissive carbonate rocks in the
AM basin with transmissive basin fill in the Amargosa Desert (see
Section 4.3 for more details). Groundwater from Rainier Mesa and the
Yucca Mountain area moves southward into the Amargosa Desert. Most

groundwater in the Amargosa Desert moves westward and discharges at
Furnace Creek in Death Valley.

2.2. Sample collection and geochemical analysis

Between 2008 and 2014, a total of 42 samples were collected from
wells, mine vent holes, or springs. These samples were collected from 36
sites across the DVRFS (Fig. 1, Table S2). The number of sites per location
varied (Table S2) based on accessibility [Amargosa Valley (sites [n] = 1,
samples [s] = 3), Ash Meadows discharge area (n = 7, s = 7), Death Valley
(n = 3,s = 3), Frenchman Flat (n = 2,s = 2), Oasis Valley (n = 2,s = 2),
Pahute Mesa (n = 12, s = 16), Rainier Mesa (n = 2, s = 2), Spring Moun-
tains (n = 4,s = 4), and Yucca Flat (n = 3, s = 3)]. The location Amargosa
Valley is within the Amargosa Desert. For well samples, groundwater gen-
erally was pumped at high rates (hundreds of L/min) for hours-to-days
prior to collection of geochemical and microbial samples to minimize
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wellbore artifacts. In a few cases, well water samples were obtained by
lower rate “jack pumps” (in-line submerged pump) or from static water col-
umns with discrete sampler deployments (i.e., “bailers”). The mine water
samples (U12n-10 [RM1] and U12n-vent2 [RM2]) were collected from
flooded workings by bailer from hundreds of meters overhead via vertical
ventilation holes. Spring samples from Ash Meadows and Spring Mountains
were collected by pumping with a peristaltic pump and sterile platinum-
cured silicone tubing (Masterflex LS-15) inserted as deeply into the spring
orifice as possible via a 24’ (7.3 m) telescoping probe to minimize surface
associated influences. For the site in the Amargosa Valley (4PD), water
was pumped continuously over a few weeks, with samples collected on
days 1, 9, and 23. At four sites on Pahute Mesa (ER-20-8 [PM15, PM16],
ER-EC-13 [PM10, PM5], ER-EC-15 [PM4, PM7, PM8], and PM-3 [PM1,
PM2]), samples were collected via pumping from discrete piezometers
screened at multiple different depths, as listed in Table S2, because there
may be microbial community differences with depth (Moser et al., 2014).

Cells for DNA extraction were collected on 0.22 pm Sterivex™ filters
(EMD Millipore, U.S.A.) with the filtrate retained for geochemical analysis
and the filters transported on dry ice and stored at — 80 °C. The DNA extrac-
tion and sequencing methods are described in Supplementary methods
Section 1.1. The method and volume of filtration for cells varied depending
on the circumstance: (1) ranging from tens to hundreds of liters collected
via a pressurized sampling manifold (~0.5 bar) at the wellhead for most
pumped samples; or (2) two to four liters filtered offsite for bailed samples
or samples containing radioactive elements. Nevares Deep Well 2 (DV1) is
artesian and was sampled at ambient pressure (0.4 bar) via a dedicated
sampling port at the wellhead. Most geochemical analyses reported here
were processed as part of the UGTA groundwater sampling and analysis
program (Farnham, 2020). Otherwise, the geochemical analyses were per-
formed at the DRI Water Analysis Laboratory (Reno, NV) or at Princeton
University T.C.O. (Princeton, NJ) (Moser et al., 2014), as described in Sup-
plementary methods Section 1.2.

2.3. Statistical analyses of the geochemical data

The geochemical dataset (Table S2, color scheme in Table S3) used in
this paper contains information on location, depth, and geochemical mea-
surements. Several geochemical parameters contained missing and left-
censored (i.e., below detection limit) values. To reduce the number of miss-
ing values, some missing values were substituted with geochemical data
collected from the same site on a different sampling date. Substituted
data were obtained from the UGTA Activity Environmental Management
Project database (Farnham, 2020). Although many of these values were
measured between the 1970s and 1990s, the geochemical parameters
have remained generally stable over the past few decades (Farnham,
2020). A piper diagram was created using the Geochemist's Workbench
Release 11.0.8 (Aqueous Solutions LLC, USA) with a subset of the geochem-
ical data (Ca®>*, C17,K*, Mg®*, Na*, SO3~, HCO3 ). Principal component
analysis (PCA) also was used to visualize the sample variation through
dimensionality reduction, as described in Supplementary methods
Section 1.3.

2.4. Quality control of the 16S rRNA amplicon sequences

Raw sequences were processed through QIIME 1 and DADA2 v1.12.1
(Callahan et al., 2016), as described in Supplementary methods
Section 1.4 and using similar methods as Fischer et al. (2022). Because
there were two different sequencing batches, samples were separated by
batch and processed through DADA2 separately to account for potential
error rate model differences. This resulted in amplicon sequence variants
(ASVs) unique to each batch, which may have been caused by technical
or biological differences (e.g., sample preparation, human processing,
PCR amplification, sequencing errors, and multiple 16S rRNAs per cell).
However, many ASVs from both batches were closely-related, as deter-
mined by inspection of a phylogenetic tree and sequence alignment, and
were subsequently clustered into OTUs in QIIME 2 (Bolyen et al., 2019)
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at the 97 % identity level with the function vsearch cluster-features-de-
novo. OTU clustering at the 97 % identity level can provide comparable
overall results as ASVs on a broad-scale (Louca et al., 2019; Glassman and
Martiny, 2018; Joos et al., 2020; Moossavi et al., 2020; Nearing et al.,
2018; Prodan et al., 2020). Taxonomy was assigned to the clustered OTUs
using the QIIME 2 function feature-classifier classify-sklearn with a
pretrained-classifier SILVA v138 database for OTUs from 515F/806R re-
gion of 16S rRNA sequences (Quast et al., 2013; Yilmaz et al., 2014;
Bokulich et al., 2018, 2020). The OTU and taxonomy table were then
imported to phyloseq v1.16.2 (McMurdie and Holmes, 2013), and contam-
inant OTUs removed, as described in Supplementary methods Section 1.4.
Based on rarefaction curves generated using the R package iNEXT (Hsieh
et al., 2016), sufficient sequencing depth was achieved for each sample
(Fig. S1).

2.5. Microbial community analyses

Alpha diversity (diversity within samples) indices were computed with
phyloseq (function estimate_richness) and picante v1.8.2 (Kembel et al.,
2010) using a phylogenetic tree generated as described in Supplementary
methods Section 1.5. The means between each categorical variable were
evaluated using the non-parametric Mann-Whitney test with false discov-
ery rate p-value adjustment. Phylogenetic relatedness also was determined
by calculating the standardized effect size (SES) of Faith's PD (phylogenetic
diversity), MPD (mean pairwise distance), and MNTD (mean nearest neigh-
bor phylogenetic distance) (see Table S1 for definitions), as described in
Supplementary Methods.

Beta diversity (diversity between samples) was evaluated using five ap-
proaches for comparison: (1) non-metric multidimensional scaling (NMDS)
ordination on unweighted and weighted UniFrac distances, (2) DEICODE
robust Aitchison principal-component analysis (RPCA) (Martino et al.,
2019) in QIIME 2 with auto-RPCA, (3) centered-log ratio (CLR) PCA
(Gloor et al., 2017), (4) phylogenetic isometric-log ratio (PhILR) PCA
(Silverman et al., 2017), and (5) canonical correspondence analysis
(CCA). Permutational analysis of variance (PERMANOVA) marginal tests
with 999 permutations were conducted with R function adonis2 on the
NMDS ordinations and homogeneity was checked with R function
betadisper.

Deterministic and stochastic ecological processes were evaluated using
the B-nearest taxon index (BNTI) and Raup-Crick (Bray-Curtis) (RCBC) met-
rics, following null model analyses (Stegen et al., 2012, 2013, 2015; Zhou
and Ning, 2017; Dini-Andreote et al., 2015; Danczak et al., 2020) (see
Table S1 for definitions). Only for these metrics, communities were rarefied
to the lowest sequencing depth. BNTI is used to identify deterministic pro-
cesses by quantifying phylogenetic turnover. First, species were randomly
shuffled across the tips of the phylogeny, also known as the between-
community mean-nearest-taxon-distance (BMNTD) metric, to obtain a
null distribution after repeating the shuffling 999 times. Subsequently,
the significance is evaluated by calculating the difference between the ob-
served BMNTD and mean null distribution, with BNTI < — 2 (less phyloge-
netic turnover; homogeneous selection) and BNTI > 2 (more phylogenetic
turnover; variable selection) as significant (Stegen et al., 2012). Insignifi-
cant BNTI suggests that the observed compositional differences are due to
stochastic ecological processes (Hardy, 2008), further determined by
RCBC. RCBC is based off of community composition and OTU abundances,
and follows Raup—Crick (Raup and Crick, 1979) to probabilistically assem-
ble local communities, followed by quantification with Bray—Curtis (Bray
and Curtis, 1957) to obtain a null distribution after repeating 9999 times
(Stegen et al., 2013; Danczak et al., 2020; Chase et al., 2011). The RCBC
null distribution is then standardized between —1 and + 1 and significant
values determined as RCBC < —0.95 (homogeneous dispersal) and RCBC >
0.95 (dispersal limitation). Ecological null models also assumes that phylo-
genetic relatedness is associated with ecological niche differences (Stegen
et al., 2012; Fillinger et al., 2019; Dini-Andreote et al., 2015), which was
confirmed for the DVRFS microbial community using Mantel correlograms,
following Dini-Andreote et al. (2015). A significant (P < 0.05) positive
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correlation was observed across relatively short phylogenetic distances
(Fig. S2).

Network analysis was performed using SPIEC-EASI (SParse InversE Co-
variance Estimation for Ecological Association Inference; Kurtz et al., 2015)
on commonly observed OTUs among all samples, excluding Oasis Valley
samples, to ensure robust results. ‘Common OTUs’ were defined as those
with low coefficient of variation across samples (< 3; community standard
deviation divided by community mean) (McMurdie and Holmes, 2013) and
observed at least two times in more than two samples (466 total OTUs). The
glasso (sparse inverse covariance selection) and Meinshausen-Buhlmann
(MB; neighborhood selection) method were evaluated with the Stability
Approach to Regularization Selection (StARS) and bounded-StARS (bstars)
selection criteria. Similar results were observed for both selection criteria.
Since a wider degree distribution range was observed for glasso (Fig. S3),
the glasso bstars approach was chosen for subsequent analysis in igraph
(Csardi and Nepusz, 2006). OTUs with weak connection (edge weight <
0.02) were removed. Various clustering algorithms were performed to de-
fine clusters within the network, and the unsupervised Louvain clustering
algorithm (Clauset et al., 2004; Blondel et al., 2008) was chosen based on
the highest modularity score of 0.694 among all the algorithms. The 16
clusters were then manually inspected; clusters with only two connections
were removed and nearby connected clusters with the same overall loca-
tion associated with OTUs were combined. Cytoscape (https://cytoscape.
org/) was used for visualization and network analysis.

2.6. Data availability

The 16S rRNA gene amplicon sequences were deposited at GenBank
under the accession KEWZ00000000. The version described in this paper
is the first version, KEWZ01000000. Scripts used to analyze and create fig-
ures of the geochemistry and microbial community are available at https://
github.com/LLNL/2022_DVRFS_microbiome.

3. Results
3.1. Sample description, study limitations, and biases

A total of 42 samples were collected from 36 sites (Fig. 1, Tables S2-S3)
that encompass the AM, AFFCR, and PMOV groundwater basins. Samples
were collected opportunistically based on site availability, and most sam-
ples were collected from recharge and discharge areas within their respec-
tive groundwater basins. Due to our sampling limitations, the influence of
seasonality, changes in recharge events, or hydraulic dynamics could not
be determined on the temporal dynamics of subsurface microbial commu-
nities. This has been documented in previous studies of the Hainich Critical
Zone Exploratory fractured aquifer system (Yan et al., 2021), a landfill-
leachate contaminated aquifer (Abiriga et al., 2021), and a tar-oil contam-
inated aquifer (Pilloni et al., 2019). However, the very long residence
times and deep flow paths of water in this system would argue against
short-term effects other than from pumping (Halford and Jackson, 2020).
There also are sample biases in this study, including the number of samples
per location, sample collection method, and two sequencing batches. The
specifics of these biases are described in Section 2.2 and were considered
when analyzing the microbial community data.

3.2. Geochemistry

The major-ion chemistry of study sites were grouped into three broad
categories: Ca-Mg-HCO3, Na-HCO3, and NaCl dominated waters (Fig. 2A),
which were determined from a piper diagram (Fig. S4) and concur with
previous reports (Thomas et al., 2013; Belcher et al., 2009; Belcher et al.,
2019; Warix et al., 2020; Harrill and Bedinger, 2020). Principal component
analysis (PCA) indicates that Ca-Mg-HCOs3-type waters cluster together,
whereas the Na-HCOs-type and NaCl-type waters group together. Notably,
all 42 samples distinctly clustered into carbonate and volcanic rock types
(Fig. 2A). Rock types were assigned based on the predominant rock type
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found at the depth sampled. Most samples also clustered by location, with
the largest variation observed for samples collected from Yucca Flat, Rainier
Mesa, and Oasis Valley (Fig. 2B). The water chemistry of Yucca Flat samples
(YF1-YF3) is highly variable because of different hydrogeologic settings.
YF1 (UE-2ce-WW-Nash), YF2 (U-3cn5-Bilby), and YF3 (UE-3E-4-Aleman)
were sampled from wells completed in carbonate rock, carbonate and volca-
nic rocks, and volcanic rocks, respectively. Rainer Mesa samples (RM1
[U12n-10], RM2 [U12n-vent2]) likely do not cluster together because of
the water geochemistry. RM1 has higher SO3 ~, Na*, and SiO; concentra-
tions (influenced by a local granite intrusion and pyrite oxidation leading to
high sulfate) compared to RM2 (Fig. 2C, Table S2). Oasis Valley samples
(OV1, 0V2) likely do not cluster together because of higher SO3~ and
total organic carbon (TOC) concentrations observed in OV1.

3.3. Description of groundwater bacterial and archaeal groundwater microbial
community

The groundwater microbial community consisted of 5124 unique oper-
ational taxonomic units (OTUs) that were identified from 1,267,990 reads
(Tables S4-S5). The final number of reads for OTUs per sample ranged
from 2790 to 123,420 (average = 30,190) (Table S4). Because a higher
number of reads was observed for samples sequenced in batch 2 (average
= 90,352; batch size = 7) than batch 1 (average = 18,158; batch size =
35), subsequent analyses considered sequence batch effects. Among the
OTUs identified, only 43 OTUs were present in more than ten sites. The
most commonly observed taxa include those from genera Pseudomonas,
Curvibacter, Phenylobacterium, Thiobacillus, and Hydrogenophaga. Although
community structure varied from site to site, the overall community was
composed mainly of Bacteria (49-100 %), and most sites were dominated
by the phyla Proteobacteria (average = 42 %), Bacteroidota (15 %),
Firmicutes (13 %), and Desulfobacterota (11 %) (Fig. S5). Within
Proteobacteria, only Alphaproteobacteria and Gammaproteobacteria clas-
ses were observed. The archaeal relative abundances averaged 7 % for all
sites, and the highest abundances (51 %) were observed in sample DV3
(Inyo-BLM 1).

Diversity within communities (alpha diversity) largely varied based on
location and location type (Figs. 3 and S6). Although there were significant
differences (P < 0.05) between the means of some categories (e.g., springs
and wells) (Fig. S6), the standardized effect size (SES) of all alpha diversity
metrics suggests that the differences could be affected by species richness
(number of OTUs in each sample) (Fig. 3) (Pavoine et al., 2013; Swenson,
2014; Sandel, 2018). SES also can describe the phylogenetic relatedness
within communities, and for most communities sampled, the SES-PD and
SES-MNTD were negative and significantly different than the null model
(P < 0.05), indicating that OTUs within each community were more closely
related than expected by chance.

3.4. Microbial community variability by location

Differences in community composition between samples (beta diver-
sity) were mostly explained by location. PERMANOVA by location- and
geochemical-type variables revealed that location significantly
(PERMANOVA P = 0.003; ANOSIM P = 0.001) explained the most vari-
ance of any factor (~27 %) for the NMDS weighted UniFrac (Table 1).
NMDS ordination of unweighted (Fig. 4A) and weighted UniFrac
(Fig. 4B) distances both identified that Oasis Valley microbial communities
are distinct from other study-area microbial communities. The following
clusters appear to group together for both ordinations, even when removing
potentially biased samples (e.g., sequence batch): (1) Ash Meadows and
Spring Mountains, and (2) Pahute Mesa and Frenchman and Yucca Flat.
Rainier Mesa and Death Valley microbial communities differ between un-
weighted and weighted UniFrac NMDS ordinations, suggesting that both
OTU relative abundances and phylogeny are important factors for the
sites sampled. In addition to location, sampling depth relative to the
water table (P = 0.001) significantly contributed to the variation but ex-
plained only ~6 %.
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Fig. 2. Principal components analysis (PCA) of geochemical data. (A) Variation of samples by major-ion chemistry and rock type. (B) Variation of samples by location.

(C) Contribution of each geochemical variable (n = 17) used in the PCA.

Geochemical-type variables minimally explained community varia-
tion (Table 1, Fig. 4C). For NMDC ordinations, rock type is the most
significant contributor (~9 %; P = 0.002), followed by TOC (~6 %,
P = 0.026) and temperature (~6 %, P = 0.002). Unlike location-type
variables, the PERMANOVA of geochemical-type variables is signifi-
cantly influenced by sequence batch runs (P = 0.039) and sampling-
method approaches (P = 0.020). However, constrained ordination
using CCA (Fig. 4C) confirmed that rock type, TOC, and temperature
are significant (P < 0.05) factors determining the microbial community
variation. Oasis Valley samples were removed before performing CCA

because of their distinct geochemical and microbial compositions. Al-
though CCA only explained ~8 % of the total community variation,
the microbial communities could be clustered by rock type and location.
Notably, similar to the geochemical ordination (Fig. 2), the two rock
type clusters (carbonate and volcanic) followed along the vectors for
calcium, nitrate, and sodium. Within location, CCA also revealed that
the community variation may be explained by certain geochemical-
type variables (e.g., Fig. 4C; Pahute Mesa communities appear to vary
along a temperature gradient). Thus, the combined results of CCA and
NMDS ordinations indicate that, on a regional-scale, although microbial
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Fig. 3. Standardized effect size (SES) of Faith's PD (SES-PD), mean pairwise distance (SES-MPD), and mean nearest neighbor phylogenetic distance (SES-MNTD). Asterisks

indicate p-value significance: *P < 0.05, **P < 0.01, ***P < 0.001. Black circles indicate samples with communities that are significantly (P < 0.05) different from the

null distribution, whereas red circles are not significantly different from the null distribution.
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Table 1
PERMANOVA of the weighted UniFrac beta diversity ordination using location and geochemical parameters.
Interest [x1* Sum sqrs R? Pseudo F statistic P-value Betadisper” P-value ANOSIM® R-value ANOSIM P-value
Location Location 0.488 0.266 2.104 0.003 0.168 0.418 0.001
Depth (m)* 0.105 0.058 3.180 0.001 0.672
Sampling method? 0.063 0.035 0.957 0.416 0.464 0.080 0.169
Sequence batch® 0.039 0.021 1.177 0.244 0.662 0.190 0.091
Residual 0.994 0.543
Total 1.831 1
Geochemistry Rock typef 0.158 0.086 4.661 0.002 0.056 0.296 0.001
Temperature (°C) 0.101 0.055 2.990 0.002 <0.001
TOC (mg-C/L) 0.108 0.059 3.190 0.026 0.290
pH 0.046 0.025 1.363 0.148 0.477
Tritium® 0.040 0.022 1.178 0.244 0.115 -0.117 0.887
Sampling method? 0.122 0.067 1.806 0.020 0.464 0.080 0.169
Sequence batch® 0.063 0.034 1.847 0.039 0.662 0.190 0.091
Residual 1.119 0.611
Total 1.831 1

# PERMANOVA was conducted on the weighted UniFrac beta diversity distribution (Fig. 4B). [X] refers to the formula: adonis2([data] ~ [X], perm = 999, by = “margin”).
[X] considers all listed variables for each ‘Interest’. [data] is the distance matrix derived from the weighted UniFrac. For example, adonis2([data] ~ Location + Depth +
Sampling Method + Sequence Batch, permutations = 999, by = “margin”). Bolded variables are significant (P < 0.05 for PERMANOVA and/or ANOSIM).

b Betadisper (homogeneity condition) and ANOSIM (analysis of similarity for categorical variables) R functions were used on individual variables.

¢ Sample collection depth from the water table.

4 Samples were collected by pump, jack pumps (in-line submerged pump), or bailer. For location variables, ‘sampling method’ was used as a proxy for ‘location type’ (well,
spring, or tunnel) due to overlaps in metadata for spring and groundwater sampling methods.

¢ The majority of samples were sequenced in Batch 1 and seven samples sequenced in Batch 2 (Table S2).

f Samples were categorized by rock type based on host rock (carbonate or volcanic) at the depth sampled.

& Tritium concentrations were split into ‘High’ (=100 Bq/L) and ‘Low’ (<100 Bq/L) categories.

community variation can be explained more by location, geochemical
conditions play an important role.

Other ordinations, including DEICODE RPCA (Martino et al., 2019),
CLR PCA, and PhILR PCA (Silverman et al., 2017) (Fig. S7), that take into
account the sparse, compositional nature of microbial community datasets
(Gloor et al., 2017) were evaluated to compare against the NMDS and CCA
ordinations. Consistent with the NMDS ordinations, Oasis Valley communi-
ties were identified as a separate group for all three ordinations (Fig. S7A,
D, G). However, this result may be attributed to a noticeable separation of
samples by sequence batch for CLR (Fig. S7E) and PhILR PCA (Fig. S7H).
Sequence batch did not seem to impact DEICODE RPCA (Fig. S7B), likely
because the DEICODE algorithm utilizes the geometric mean of log-
transformed nonzero data and conducts matrix completion (Martino
et al., 2019). After removing potentially biased samples (i.e., Batch 2 and
tunnel-collected samples), both CLR and PhILR PCA ordinations also iden-
tified the two groups observed for NMDS ordinations: (1) Ash Meadows and
Spring Mountains, and (2) Pahute Mesa and Frenchman and Yucca Flat
(Fig. S7F and I). In contrast, these two groups were not observed for
DEICODE RPCA (Fig. S7C) and may be the result of the likely highly-
ranked (Martino et al., 2019) nature of the microbial community dataset,

A) UniFrac

B) Weighted UniFrac

in which samples contain few similar microbes depending on location or
other unknown factors not included in the metadata. Highly-ranked
datasets also might be caused by unforeseen local-scale geochemical gradi-
ents that impact the microbial community and influence the resultant RPCA
ordination (Martino et al., 2019). In contrast, the unweighted and weighted
UniFrac NMDS ordination may accurately represent the microbial commu-
nity and has been demonstrated to achieve high clustering accuracy
(Martino et al., 2019; Weiss et al., 2017; Wright et al., 2021).

Network analysis of the ‘common OTUSs’ identified nine clusters and re-
vealed that co-occurring taxa generally subsisted within the same location
(Fig. 5, Fig. S8 depicts the ratio of reads per location for each OTU). For net-
work analysis, OV samples were removed because beta-diversity and geo-
chemical analyses indicate that OV1 and OV2 were microbially and
geochemically distinct from all other locations. Five clusters (NNSS 1-5)
represent OTUs that co-occurred within or near the NNSS sites (Pahute
Mesa, Rainier Mesa, and Frenchman and Yucca Flat). Each NNSS 1-5 clus-
ter contains different ‘common OTUs’ (Table S7). Cluster AV (Amargosa
Valley) was categorized separately from the NNSS clusters since the major-
ity of OTUs co-occurred only in Amargosa Valley. In addition, there is a
high degree (average = 22.8) of connectivity within cluster AV, which

C) CCA
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Fig. 4. NMDS (Non-metric multidimensional scaling) ordinations of the planktonic microbiome. Beta diversity was evaluated using NMDS ordination [(A) unweighted
UniFrac and (B) Weighted UniFrac] and (C) CCA ordination [with OV samples removed; vectors show the significant (P < 0.05) geochemical variables contributing to the
variance]. Samples are colored by location. Rock type also is specified for CCA ordination.
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Fig. 5. Co-occurring ‘common OTUS’ cluster by location. Nodes are colored by cluster and represent the overall location associated with a set of OTUs. Nine clusters were
identified: NNSS 1 = Nevada National Security Site 1 (light purple; representative of Pahute Mesa communities), NNSS 2 (dark purple; Frenchman & Yucca Flat and
Pahute Mesa), NNSS 3 (purple; Rainier Mesa), NNSS 4 (pink; Frenchman & Yucca Flat and Pahute Mesa), AV = Amargosa Valley (blue), AM = Ash Meadows (red), SM
& OV = Spring Mountains and Oasis Valley (yellow), DV = Death Valley (green), and OV = Oasis Valley (grey). The ratio of reads per location for each cluster is
represented by a donut chart, and Fig. S8 depicts the ratio of reads per location for each OTU (node). The size of the node is based on the total number of reads for that
OTU. Edge weights are shown as thickness and darkness of the connection between two nodes (e.g., thicker and darker edges indicate a stronger connection).

may be attributed to the collection of three samples pumped at the same site
(4PD [AV1-3]) over time from 1 to 23 days. This suggests there is some de-
gree of temporal consistency within this site, and potentially in other sites.
In comparison, the degree of connectivity for the five NNSS clusters average
between 3.2 and 7.7 (Table S6). Cluster AM also has a high average degree
(19.3) of connectivity and three nodes connect cluster AM to the rest of the
network via cluster SM.

3.5. Ecological processes that influence microbial community variation

Null models (see Table S1 for definitions) were used to identify the eco-
logical processes that drove microbial community assembly and could in-
fluence community variation. This approach has been applied to
communities in surface water (Wang et al., 2013), soil (Dini-Andreote
et al., 2015; Wang et al., 2013; Liu et al., 2017), and the subsurface
(Stegen et al., 2012, 2013, 2015; Fillinger et al., 2019; Danczak et al.,
2020; Wang et al., 2013; Beaton et al., 2016; Danczak et al., 2018). There
are two null modeling steps to identify deterministic and stochastic ecolog-
ical processes: BNTI and RCBC, as described in Section 2.5. Overall, stochas-
tic and undominated processes governed the microbial communities most
(Fig. 6 inset), with deterministic processes only contributing ~25 % (except
for Oasis Valley at ~50 %). Although certain locations had limited samples
in our study, the assembly processes, taken as a whole, support the clusters
identified by ordination analyses. The microbial communities of Spring
Mountains, Ash Meadows, and Oasis Valley were governed largely by var-
iable selection (BNTI > 2), dispersal limitation (|BNTI| < 2 and RCBC >
0.95), and undominated processes (|BNTI| < 2 and |RCBC| < 0.95) when
compared against other communities (Fig. 6). For microbial communities
within and near the NNSS, homogeneous dispersal (|BNTI| < 2 and RCBC
< —0.95) and homogeneous selection (BNTI < —2) were more prominent.

For example, Pahute Mesa communities were more similar (homogeneous
selection) and had less turnover (homogenizing dispersal) than expected
by chance. This signifies high dispersal rates and comparable geochemical
conditions across Pahute Mesa that forced local communities to be more
similar.

4. Discussion

In this study, we hypothesize that groundwater flows through hydrauli-
cally connected fractures and enables the dispersal of planktonic microor-
ganisms, sometimes over considerable distances. Along a given flow path,
geochemical conditions evolve with rock-water interactions or mixing of
disparate fluids within interconnected pore spaces. These conditions can
impart selective pressures on transported microorganisms and influence
the local community assembly patterns. Fluid conduits also can become
clogged over time and inhibit microbial dispersal, such as from tectonic in-
fluences (Uprety et al., 2017; Kim et al., 2020; Morimura et al., 2020), sec-
ondary mineral infilling, or the overgrowth of microbial biofilms at
biogeochemical hotspots (Jackson et al., 2021; Lumban Gaol et al., 2021;
Baveye et al., 1998). Separated communities may change with time into
disparate compositions because of stochastic processes (e.g., genetic or eco-
logical drift) (Zhou and Ning, 2017). Ecological processes can be quantified
(Stegen et al., 2012, 2013, 2015), and in combination with microbial diver-
sity and co-occurrence patterns, we assessed whether regional microbial
community patterns are consistent with regional groundwater-flow paths
(Fig. 1). Microbial community patterns are compared to the following re-
gional groundwater-flow paths (Halford and Jackson, 2020): (1) Spring
Mountains to Ash Meadows discharge area; (2) Frenchman & Yucca Flat
to Amargosa Desert; (3) Rainier Mesa to Amargosa Desert; (4) Pahute
Mesa to Oasis Valley; and (5) Amargosa Desert to Death Valley (Fig. 1).
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Fig. 6. Heatmap of ecological processes dominating microbial community composition between locations. Deterministic and stochastic community assembly processes were
quantified using null models (Moreo and Justet, 2008; Winograd and Pearson, 1976; Winograd et al., 1998). Deterministic processes (right side of heatmap) include variable
selection (green; BNTI > 2) and homogeneous selection (blue; BNTI < —2). When |BNTI| < 2, the phylogenetic relatedness between two communities did not differ
significantly than expected by chance, and stochastic processes dominate (see left side of heatmap). Stochastic processes include homogenizing dispersal (red; |BNTI| < 2
and RCBC < —0.95), dispersal limitation and drift (purple; |BNTI| < 2 and RCBC > 0.95), and undominated (JRCBC| < 0.95) processes (Table S8; Table S1 for
definitions). Ratios of the ecological processes were obtained for each overall location (inset).

4.1. Microbial community dispersal and evolution from Spring Mountains to Ash
Meadows

The Spring Mountains (recharge area) to Ash Meadows (discharge area)
groundwater-flow path (Fig. 1) likely transports planktonic microorgan-
isms. In the AM Basin, the microbial community is similar between the
recharge area (Spring Mountains) and Ash Meadows discharge area
(Fig. 4). This result was corroborated with network analysis (Fig. 5),
which identified ‘common OTUS’ co-occurring in the Spring Mountains
and Ash Meadows discharge area (e.g., ‘common OTUs’ in cluster SM).
The separation of ‘common OTUSs’ into two clusters (AM and SM; clusters
previously described in Section 3.4) suggests that other factors impacted
the communities observed in each location. Indeed, null model analyses
identified three major ecological forces that can explain differences be-
tween the Ash Meadows and Spring Mountains communities: selection pro-
cesses, dispersal limitation, and undominating processes (Fig. 6). This is not
surprising given the differences in elevation and geochemistry (Fig. 2) that
arise from the evolution of groundwater along the flow path. Notably, these
two communities are separated in the CCA ordination (Fig. 4C), likely due
to differences in calcium and nitrate. In addition, the most-recent ground-
water characterization study of the DVRFS (Halford and Jackson, 2020)
identified other sources that contribute to Ash Meadows discharge, includ-
ing the Sheep, Desert, Pintwater, and Spotted Ranges (Fig. 1).

4.2. Microbial community similarities within the NNSS and at Amargosa Valley

Microbial communities at sites within and near the NNSS were rela-
tively similar (Amargosa Valley, Frenchman and Yucca Flat, Pahute Mesa,
Rainier Mesa; Fig. 4), despite locations occurring within different ground-
water basins (Fig. 1). Network analysis (Fig. 5) also identified co-
occurring ‘common OTUs’ within these locations, and five disparate NNSS
clusters of ‘common OTUs’ were identified (Cluster NNSS 1-5). The five
NNSS clusters connected to the network via cluster AV (Amargosa Valley;
within Amargosa Desert), cluster DV (Death Valley), or cluster AM (Ash
Meadows).

Similarities between the microbial communities of NNSS sites with
Amargosa Valley suggest the communities have adapted to similar environ-
mental conditions or have dispersed via a groundwater flow connection
towards Amargosa Valley. Many communities between these locations
were dominated by homogenizing dispersal or homogeneous selection
(Fig. 6), demonstrating the communities are more similar than expected
by chance. Network analysis also grouped ‘common OTUs’ with putatively
diverse metabolisms within cluster AV. The four most abundant OTUs
in cluster AV were putative sulfur-oxidizing (e.g., Thioalkalispiraceae,
Hydrogenophilaceae), methanotroph (e.g., Methylomonas), and iron-
oxidizing (e.g., Gallionellaceae) microbes. Some OTUs are likely metaboli-
cally flexible, capable of mixotrophic or facultative anaerobic growth,
such as those within family Hydrogenophilaceae. The diversity of potential
metabolisms present in cluster AV is consistent with the geochemical
mixing of multiple groundwater sources in the Amargosa Desert. Ground-
water in the Amargosa Desert is derived largely from the AFFCR and AM
groundwater basins (Halford and Jackson, 2020), in which three recharge
areas converge in the Amargosa Desert: (1) Yucca Mountain and nearby up-
land areas in the AFFCR groundwater basin; (2) Yucca Flat in the AM
groundwater basin; and (3) infiltration from the Amargosa River and
Fortymile Wash in the AFFCR basin (Fig. 1). This mixed groundwater
then flows towards the Furnace Creek discharge area in Death Valley.

4.3. The Death Valley microbial community likely supports the basin-fill flow
conceptualization

There are two conceptualizations for groundwater flow towards Death
Valley: (1) the deep-carbonate flow conceptualization; and (2) the basin-
fill flow conceptualization (Fig. 7). Previous groundwater studies suggested
that Death Valley discharge was sourced from a deep-carbonate flow path
that passed beneath the Ash Meadows discharge area and Amargosa Desert
(Belcher et al., 2019; Faunt et al., 2010; Bredehoeft and King, 2010)
(Fig. 7). In contrast, the most recent groundwater study by Halford and
Jackson (2020) determined that the basin-fill flow conceptualization best
explains water levels, water chemistry, and aquifer-testing data. The
basin-fill flow conceptualization interprets groundwater flow as moving
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through shallow basin-fill, volcanic, and carbonate rocks towards Furnace
Creek-the principal discharge area in Death Valley (Fig. 7).

The Death Valley microbial community better supports hydraulic con-
nections proposed in the basin-fill conceptualization, rather than the
deep-carbonate flow conceptualization. The Death Valley microbial com-
munity consists of samples collected from three carbonate wells: DV1
(Nevares Deep Well 2) and DV2 (Nevares) in the Furnace Creek discharge
area; and DV3 (Inyo-BLM 1) in the central Amargosa Desert (Fig. 1). For
the Death Valley microbial community to support the deep-carbonate
flow conceptualization, microbial communities are expected to be related
between Death Valley, Ash Meadows, and the Spring Mountains. Instead,
NMDS ordination (Fig. 4A and B), network analysis (Fig. 5), and ecological
null models (Fig. 6) suggest that Death Valley microbial communities are
more related to Amargosa Valley and NNSS locations, rather than to Ash
Meadows and Spring Mountains. Although there may be some similarity
between Death Valley communities and Ash Meadows in the CCA ordina-
tion (Fig. 4C), this analysis only accounts for ~8 % of the total community
variation. Moreover, homogeneous dispersal or selection contributed to
community turnover between Death Valley, NNSS locations, and Amargosa
Valley (Fig. 6; Table S8). This suggests that these communities were more
similar than expected by random chance. In contrast, dispersal limitation
and variable selection played a role in community turnover between
Death Valley and Ash Meadows/Spring Mountains, which suggests a lim-
ited hydraulic connection between these areas. Network analysis indicates
that cluster DV is closely associated with the NNSS clusters, particularly
NNSS1 and NNSS2, and ‘common OTUSs’ observed in Death Valley are
also found in NNSS clusters and cluster AV (Fig. 5).

4.4. The Death Valley microbial community may support groundwater compart-
mentalization into shallow and deep zones

Halford and Jackson (2020) posit that the DVRFS is compartmentalized
into two parts: (1) a shallow, high-transmissivity part within 500 m of the
water table where nearly all flow occurs; and (2) a deep, less active, low-
transmissivity part that has limited interaction with the shallow part
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(Halford and Jackson, 2020). The Death Valley microbial community ap-
pears to support a compartmentalized groundwater system.

Nevares wells (DV1/DV2) have ~100 m sampling depths and are con-
ceptualized as occurring within the active, high-transmissivity part of the
groundwater system. In contrast, Inyo-BLM 1 (DV3) was sampled at
~600 m depth, and is in low-transmissivity rock (~9-84 m? per day)
(Halford and Jackson, 2020; Cutillo and Bredehoeft, 2011); thus, Inyo-
BLM 1 (DV3) is conceptualized as occurring within the deep, less active,
low-transmissivity part of the groundwater system. Inyo-BLM 1 (DV3)
and Nevares Deep Well 2 (DV1) have similar geochemical conditions
(Fig. 2, Table S2), including temperature and sulfate concentrations. De-
spite similar aqueous chemistries, Thomas et al. (2013) suggested hydraulic
isolation between the microbial communities of Inyo-BLM 1 (DV3) and
Nevares Well and Spring.

In this study, NMDS and CCA ordinations (Fig. 4) appears to concur
with Thomas et al. (2013), with more similarity between Nevares wells
(DV1/DV2) compared to Inyo-BLM1 (DV3). There also are large phyloge-
netic and compositional differences. Only eight OTUs were present in
both Nevares Deep Well 2 (DV1) and Inyo-BLM 1 (DV3); and only two
OTUs were present in both Nevares (DV2) and Inyo-BLM 1 (DV3). In con-
trast, 256 OTUs were present in both Nevares communities (DV1/DV2).
The Inyo-BLM 1 (DV3) community consisted of a large population of puta-
tive methanogens (~50 %), followed by sulfate reducers (~31 %). In con-
trast, probable sulfate reducers composed most of the population at
Nevares (DV1/DV2). Community differences may be impacted by unmea-
sured geochemical factors, such as higher pressures at depth in Inyo-BLM
1 (DV3) compared to the shallow Nevares wells (DV1/DV2). These deter-
ministic differences were not apparent using ecological null models
(Fig. 6), and more samples are required to confirm the null models between
Inyo-BLM 1 (DV3) and Nevares wells (DV1/DV2).

4.5. Lack of similarity between Pahute Mesa and Oasis Valley

The microbial community of Oasis Valley is compositionally and phylo-
genetically distinct from all other study-area locations (Fig. 4). Oasis Valley
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OTUs represented ~39 % of the total OTUs sampled in this study, of which
~85 % were observed only in Oasis Valley. The lack of microbial similarity
between Pahute Mesa and Oasis Valley does not reflect regional
groundwater-flow paths in the PMOV basin (Fig. 1; Bushman et al., 2010;
Fenelon et al., 2020). However, the two Oasis Valley samples may not be
representative of regional groundwater in this location as supported by
the presence of many soil-associated and aerobic microbes. Moreover, the
geochemistry of OV1 is distinct from other locations (Fig. 2), with relatively
high TOC concentrations (37 mg-C/L). The combination of microbial
(Fig. 4; taxonomic composition) and geochemical (Fig. 2) data suggest
that the two Oasis Valley samples are likely more impacted by land-
surface-associated factors, owing to their relatively shallow depths and sit-
ing within the alluvium of the Amargosa River floodplain. Hence, these
sites are probably disconnected hydrologically from the regional aquifer
and conceptually can be regarded as hyporheic. This observation demon-
strates the utility in supplementing geologic and hydrologic datasets with
microbial community data for a comprehensive evaluation of groundwater
samples.

The Pahute Mesa microbial community consists of wells that were sam-
pled within the Pahute Mesa recharge area (PM3; PM6; PM11; PM12) and
wells immediately downgradient of the recharge area (PM1; PM2; PM4;
PM5; PM7-PM10; PM13-PM16) (Fig. 1). Pahute Mesa communities are
similar by NMDS and CCA ordinations (Fig. 4), and many ‘common
OTUSs’ co-occur within Pahute Mesa (cluster NNSS 1) (Fig. 5). Moreover,
the two ecological processes dominating between Pahute Mesa communi-
ties include homogeneous dispersal and homogeneous selection (Fig. 6).
Microbial dispersal may be influenced by the flow system at Pahute
Mesa, which is dominated by high groundwater-flow velocities (Fenelon
et al., 2016; Jackson et al., 2021). Groundwater flow in this area occurs
through highly transmissive volcanic rocks, and tritium plumes from
Pahute Mesa have only traveled <4 km beyond the NNSS borders since
2021, with an advective transport velocity of ~84 m/yr (Halford and
Jackson, 2020). Taken together, these observations suggest that microbial
dispersal in the PMOV basin is possible at least within the Pahute Mesa re-
charge location.

5. Future outlook

This study demonstrates that the regional-scale groundwater microbial
community is a relevant data source; however, there were many limita-
tions, as noted in Section 3.1, and future studies are needed. For example,
the findings in this study suggest there could be a detection limit to
identifying similar microbial communities between recharge and discharge
areas, which may be correlated with groundwater-flow rates, transmissiv-
ity, or time. Areas with relatively fast-flowing groundwater and high
transmissivity are more likely to have similar microbial communities
(e.g., Ash Meadows and Spring Mountains). In contrast, areas with low
transmissivity (e.g., deep-carbonate flow towards Death Valley) may im-
pede large microbial migration from recharge to discharge areas, such
that deterministic factors and genetic evolution outcompete dispersal. Fu-
ture studies that quantify and correlate microbial community patterns
with hydrogeologic factors and perturbations (e.g., groundwater-flow
rate, transmissivity, time-scale) are needed. Temporal replicates will also
help establish the microbial community variation within each site and
may reveal potential seasonal-, pumping-, or recharge-associated perturba-
tions. Moreover, groundwater microbial community samples collected
along a groundwater-flow path and at various depths can identify potential
candidates for use as a microbial ‘tracer’ by providing insight into the per-
sistence of specific microbial species. This spatial data also will help to con-
firm that ‘common OTUS’ in recharge and discharge zones can be used for
helping characterize groundwater flow. While our study approach was
cost-effective (amplicon sequencing), it was limited to microbial abundance
information and the bacterial/archaeal community. Future studies can
combine other approaches, such as obtaining microbial functions/activity
and metabolites, to provide additional insight into hydrobiogeochemical
dynamics and fluxes.
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6. Conclusion

The DVRFS microbial community patterns were mostly consistent with
the regional-scale groundwater-flow conceptualization. Overall, microbial
communities within recharge and discharge areas connected by a flow path
were similar (e.g., Spring Mountains and Ash Meadows), and location was
the most significant variable differentiating between the communities. Nota-
bly, communities within and near the NNSS were similar, although ground-
water flow from Pahute Mesa towards other NNSS sites is limited. Network
analysis also demonstrated that ‘common OTUSs’ clustered together by loca-
tion, and in particular, clusters of ‘common OTUSs’ found within and near
the NNSS were connected via a cluster composed of Amargosa Valley
OTUs. These OTUs represented a range of putative metabolisms, indicative
of the mixing of various groundwater sources at Amargosa Valley, which is
consistent with the most recent groundwater conceptualization of the
DVREFS. Ecological null model analyses also identified locations in which
communities were relatively similar due to deterministic and stochastic pro-
cesses, and largely corroborated the other microbial community analyses
conducted in this study. However, the microbial community patterns
contradicted the hydraulic connection between Pahute Mesa (recharge)
and Oasis Valley (discharge) in the PMOV groundwater basin, probably
reflecting a lack of direct hydrologic connectivity between the upgradient re-
gional flow system and discharge zone wells that were available for sam-
pling. Overall, this exploratory study demonstrates that regional-scale
groundwater microbial community patterns can be used to supplement geo-
logic and hydrologic data in characterizing groundwater flow.
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