
 | Host-Microbial Interactions | Announcement

Genome sequence of Asaia bogorensis strain SC1 isolated from 
an Aedes aegypti mosquito crop
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ABSTRACT Understanding microbe-host interactions is key to combating disease 
transmission by mosquitoes. Here, we report the genome sequence of Asaia bogorensis 
strain SC1 isolated from a human-blood-fed Aedes aegypti mosquito crop. Metabolic 
pathway characteristics of aerobic respiration were present in the genome, along with 
multiple putative antibiotic resistance mechanisms.
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T he dipteran crop, a food storage organ found in mosquitoes, harbors a diverse 
microbiome that can impact various aspects of host physiology and ecology (1–3). 

However, microbial metabolism in the crop remains poorly characterized, especially 
regarding its potential role in influencing mosquito-borne disease transmission (4). Here, 
we report the genome sequence of Asaia bogorensis strain SC1, isolated from a human-
blood-fed Aedes aegypti mosquito crop. Importantly, Asaia sp. is dominant in the crop of 
Ae. aegypti (1), suggesting a critical role for these bacteria in the organ.

Asaia bogorensis strain SC1 was isolated from human-blood-fed (University of 
Cincinnati IRB 2021-0971) Aedes aegypti mosquito crop. Briefly, the crop was dissected 
from a mosquito using ethanol-flamed forceps, homogenized in 1× PBS pH = 7.4, and 
inoculated on Luria-Bertani (LB) agar at 30°C. To ensure a pure culture, individual colonies 
were sequentially streaked on fresh LB plates three times. DNA was extracted from 
overnight LB broth cultures (30°C, 200 RPM) using the Qiagen DNeasy PowerSoil Kit 
(Qiagen, Germantown, MD) and quantified via Qubit (ThermoFisher Scientific, Waltham, 
MA). For long-read sequencing, the Native Barcoding Kit 24 V14 Kit (Oxford Nanopore 
Technologies, Oxford, UK) was used to barcode samples and prepare libraries. DNA was 
not sheared or size selected prior to library prep. Sequencing was performed with an 
R10.4.1 flow cell (FLO-MIN114) and minION device under high-accuracy mode (280 bp/s). 
Basecalling was performed using Guppy 6.4.6, and reads with quality scores <7 were 
removed. Reads were filtered with Filtlong 0.2.1 (5) to remove reads <2,000 bp and 
the lowest-quality reads comprising 10% of all sequenced bases. Short-read sequencing 
libraries were prepared with Illumina DNA Prep Kit (San Diego, CA), barcoded with 10 bp 
UDI indices, and sequenced on an Illumina NovaSeq using 2 × 150 sequencing chemistry 
(SeqCenter, Pittsburgh, PA). Short-read sequence quality was visualized with FastQC 
0.12.0 (6), and mean sequence quality was >Q30 at all positions, so no further quality 
filtering was conducted. Nanopore long-read sequences were assembled using Flye 
2.9.1 (7). Illumina reads were aligned to the long-read assembly with Burrows-Wheeler 
Aligner 0.7.17 (8). Pilon 1.23 (9) was used to polish the assembly with parameter --fix 
all. In total, three rounds of polishing were conducted. Genome statistics and assembly 
quality were determined with QUAST 4.4 (10) and CheckM 1.0.18 (11). The genome was 
annotated with NCBI PGAP 6.4 (12). Potential metabolic pathways were identified using 
KEGG’s GhostKOALA tool (13). Taxonomy was assigned with GTDB-Tk 2.2.5 (14). Default 
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parameters were used unless otherwise specified. Computing resources were supplied 
and maintained by the Ohio Supercomputer Center (15) and the DOE Systems Biology 
Knowledgebase (16).

The SC1 genome is 3.4 Mbp with 59.69% GC content (Table 1). GTDB identified the 
nearest neighbor as Asaia bogorensis (96.36% average nucleotide identity). GhostKOALA 
identified complete pathways for central carbon metabolism, including glycolysis and 
pyruvate oxidation, TCA cycle, and the pentose phosphate pathway. A complete 
oxidative phosphorylation pathway was annotated. Interestingly, pyruvate decarboxy­
lase (pdc) was absent, but other putative fermentation genes, aldehyde dehydrogenases 
(aldB) and alcohol dehydrogenase (adhA), were present. GhostKOALA identified genes 
potentially conferring resistance to vancomycin, beta-lactams, and cationic antimicrobial 
peptides. The genome sequence of Asaia bogorensis strain SC1 from the mosquito crop 
provides a valuable resource for further investigating host-microbe interactions of public 
health interest.
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TABLE 1 Sequencing statistics

Parameter Value

Raw Illumina reads accession no. SRR23872088
Raw Nanopore minION reads accession no. SRR23872085
GenBank accession no. (genome assembly) GCA_030263835.1
No. of raw paired-end Illumina reads 4,199,454
Illumina estimated genome coverage 168×
No. of raw Nanopore MinION reads (total length, base pairs) 1,215,752,376
Nanopore MinION read length N50 (bp)a 5,017
Nanopore MinION estimated genome coverage 303
Assembly size (bp) 3,404,989
G + C content (%) 59.69
Estimated genome completeness (%)a 99.75%
Estimated contamination (%)a 0
No. of contigs 4
Contig sizes (bp) 3,090,019

229,757
72,572
12,641

No. of protein-coding genes 3,025
No. of tRNA genes 58
No. of rRNA operons 5
aDetermined with CheckM 1.0.18 (9).
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