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Complete genome sequence of Halomonas sp. strain M1, a 
thiosulfate-oxidizing bacterium isolated from a hyperalkaline 
serpentinizing system, Ney Springs
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ABSTRACT We report the full genome sequence of Halomonas sp. strain M1, isolated 
from a continental high pH serpentinizing spring in northern California, USA. The 3.7 
Mb genome has a G + C content of 54.13%, encodes 3,354 protein-coding genes, and 
provides insights into the metabolic potential for sulfur oxidation.
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S erpentinizing systems are hyperalkaline environments often characterized by high 
concentrations of hydrogen and/or methane (1–3). Thermodynamic, metagenomic, 

and activity assessments have demonstrated the capacity for various redox-active sulfur 
species to serve as electron donors or acceptors in many of these systems (4, 5). Here, 
we present the complete genome sequence of Halomonas sp. strain M1, a chemolitho­
heterotrophic thiosulfate-oxidizing bacterium isolated from Ney Springs. Ney Springs is 
a hyperalkaline (pH >12) marine-like terrestrial serpentinizing system characterized by 
high methane, ammonia, sulfide, and thiosulfate concentrations and abundant putative 
lithoheterotrophs, including Halomonas species (6).

Ney Springs is located near Mt. Shasta, California, USA (41°16′14.0′′N, 122°19′27.3′
′W). M1 was isolated from Ney Springs cistern scrapings aseptically collected below 
the water surface and grown aerobically on solid Ney Springs minimal media (10 mM 
acetate, 15 mM thiosulfate, 22°C–25°C) as previously described (6). Media preparation 
instructions are available here: dx.doi.org/10.17504/protocols.io.bqjgmujw (7). M1 was 
grown aerobically in liquid minimal media (10 mM acetate, 20 mM thiosulfate) at 
22°C–25°C for 4 days without shaking. DNA was isolated from a cell pellet using the 
Qiagen DNeasy PowerSoil Kit (Germantown, MD) and quantified via Qubit (ThermoFisher 
Scientific, Waltham, MA). Illumina and Nanopore libraries were prepared from the same 
DNA prep. Illumina libraries were prepared with an Illumina DNA Prep Kit (San Diego, 
CA), barcoded with 10 bp unique dual indexing (UDI) indices, and sequenced on an 
Illumina NovaSeq (2 × 150 sequencing chemistry) at SeqCenter (Pittsburgh, PA). Oxford 
Nanopore MinION sequencing libraries were prepared using the Native Barcoding Kit 
24 V14 Kit (Oxford Nanopore Technologies, Oxford, UK) and sequenced on a R10.4.1 
flow cell (FLO-MIN114) under high-accuracy mode (280 bp/s). Basecalling was performed 
using Guppy 6.4.6, and low-quality reads (quality score <7) were removed. Filtlong 0.2.1 
(8) was used to quality filter Nanopore sequences, discarding reads <2 kb and the worst 
10% of read bases. Nanopore sequences were assembled de novo with Flye 2.9.1 (9). 
Illumina reads were aligned to the long-read assembly using Burrows-Wheeler aligner 
0.7.17-r1198 (10) and polished with Pilon 1.24 (11) with option --fix all. Three rounds of 
polishing were conducted. Assembly quality was assessed with CheckM 1.0.18 (12). The 
assembly was annotated with the NCBI Prokaryotic Genome Annotation Pipeline 6.5 (13). 
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Taxonomy was determined with GTDB-tk 2.2.5 (14). Computing resources were supplied 
and maintained by the Ohio Supercomputer Center (15) and the DOE Systems Biology 
Knowledgebase (KBase) (16). Default parameters were used unless otherwise specified.

The assembled genome consists of a 3.75 Mb circular chromosome and a 5.6 kb 
circular plasmid (Table 1). GTDB-tk identified Halomonas sp. GFAJ-1 (GCF_002966495.1, 
97.33% average nucleotide identity) as the nearest neighbor. The genome encodes 
complete Embden-Meyerhof-Parnas, Entner-Doudoroff, tricarboxylic acid, glyoxylate, 
and pentose phosphate pathways. The genome lacks a canonical Complex I but encodes 
a Na+-translocating NADH-quinone oxidoreductase and all other components required 
for oxidative phosphorylation. Phosphate acetyltransferase (pta) and acetate kinase 
(ackA) are identified in acetyl-CoA synthesis from acetate, supporting its ability to use 
acetate as an electron donor. All genes needed for dissimilatory nitrate reduction to 
ammonia are present (napAB, nirBD); however, M1 does not reduce nitrate in vitro (6). 
Sulfide:quinone oxidoreductase (sqr), sulfide dehydrogenase (fccB), thiosulfate dehydro­
genase (tsdA), thiosulfate:cyanide sulfurtransferase (tst), and tetrathionate reductase 
subunit A (ttrA) are present and putatively involved in sulfur metabolism. Our genomic 
analysis of Halomonas sp. strain M1 provides a resource for continued study of the 
ecology of heterotrophic sulfur-oxidizing organisms in serpentinizing systems.
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TABLE 1 Sequencing statistics for Halomonas sp. strain M1

Illumina reads accession no. SRR23870724
Nanopore MinION reads accession no. SRR23870723
Genome assembly accession no. CP121119, CP121120
Number of total Illumina read pairs 2,123,948
Illumina assembly coverage 152x
miION estimated assembly coverage 163x
Number of contigs 2
Nanopore MinION read N50

a 9,407
Assembly size (bp) 3,753,827
Number of protein-coding genes 3,354
Number of tRNA genes 60
Number of rRNAs (5S, 23S, 16S) 6, 6, 6
G+C content (%) for contig 1b 54.13
G+C content (%) for contig 2b 52.74
Estimated genome completeness (%) 100
Estimated contamination (%) 1.29
aDetermined with Flye 2.9.1.
bDetermined with CheckM v 1.0.18.
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