

Complete genome sequence of *Halomonas* sp. strain M1, a thiosulfate-oxidizing bacterium isolated from a hyperalkaline serpentinizing system, Ney Springs

Mehdi Alibaglouei,¹ Leah R. Trutschel,¹ Annette R. Rowe,¹ Joshua D. Sackett¹

AUTHOR AFFILIATION See affiliation list on p. 2.

ABSTRACT We report the full genome sequence of *Halomonas* sp. strain M1, isolated from a continental high pH serpentinizing spring in northern California, USA. The 3.7 Mb genome has a G + C content of 54.13%, encodes 3,354 protein-coding genes, and provides insights into the metabolic potential for sulfur oxidation.

KEYWORDS heterotrophic sulfur oxidation, alkaliphile, serpentinization, thiosulfate oxidation

Serpentinizing systems are hyperalkaline environments often characterized by high concentrations of hydrogen and/or methane (1–3). Thermodynamic, metagenomic, and activity assessments have demonstrated the capacity for various redox-active sulfur species to serve as electron donors or acceptors in many of these systems (4, 5). Here, we present the complete genome sequence of *Halomonas* sp. strain M1, a chemolitho-heterotrophic thiosulfate-oxidizing bacterium isolated from Ney Springs. Ney Springs is a hyperalkaline (pH >12) marine-like terrestrial serpentinizing system characterized by high methane, ammonia, sulfide, and thiosulfate concentrations and abundant putative lithoheterotrophs, including *Halomonas* species (6).

Ney Springs is located near Mt. Shasta, California, USA (41°16'14.0"N, 122°19'27.3"W). M1 was isolated from Ney Springs cistern scrapings aseptically collected below the water surface and grown aerobically on solid Ney Springs minimal media (10 mM acetate, 15 mM thiosulfate, 22°C–25°C) as previously described (6). Media preparation instructions are available here: dx.doi.org/10.17504/protocols.io.bqjgmujw (7). M1 was grown aerobically in liquid minimal media (10 mM acetate, 20 mM thiosulfate) at 22°C–25°C for 4 days without shaking. DNA was isolated from a cell pellet using the Qiagen DNeasy PowerSoil Kit (Germantown, MD) and quantified via Qubit (ThermoFisher Scientific, Waltham, MA). Illumina and Nanopore libraries were prepared from the same DNA prep. Illumina libraries were prepared with an Illumina DNA Prep Kit (San Diego, CA), barcoded with 10 bp unique dual indexing (UDI) indices, and sequenced on an Illumina NovaSeq (2 × 150 sequencing chemistry) at SeqCenter (Pittsburgh, PA). Oxford Nanopore MinION sequencing libraries were prepared using the Native Barcoding Kit 24 V14 Kit (Oxford Nanopore Technologies, Oxford, UK) and sequenced on a R10.4.1 flow cell (FLO-MIN114) under high-accuracy mode (280 bp/s). Basecalling was performed using Guppy 6.4.6, and low-quality reads (quality score <7) were removed. Filtlong 0.2.1 (8) was used to quality filter Nanopore sequences, discarding reads <2 kb and the worst 10% of read bases. Nanopore sequences were assembled *de novo* with Flye 2.9.1 (9). Illumina reads were aligned to the long-read assembly using Burrows-Wheeler aligner 0.7.17-r1198 (10) and polished with Pilon 1.24 (11) with option –fix all. Three rounds of polishing were conducted. Assembly quality was assessed with CheckM 1.0.18 (12). The assembly was annotated with the NCBI Prokaryotic Genome Annotation Pipeline 6.5 (13).

Editor Frank J. Stewart, Montana State University, Bozeman, Montana, USA

Address correspondence to Annette R. Rowe, annette.rowe@uc.edu.

The authors declare no conflict of interest.

See the funding table on p. 3.

Received 13 June 2023

Accepted 28 September 2023

Published 31 October 2023

Copyright © 2023 Alibaglouei et al. This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).

TABLE 1 Sequencing statistics for *Halomonas* sp. strain M1

Illumina reads accession no.	SRR23870724
Nanopore MinION reads accession no.	SRR23870723
Genome assembly accession no.	CP121119, CP121120
Number of total Illumina read pairs	2,123,948
Illumina assembly coverage	152x
MinION estimated assembly coverage	163x
Number of contigs	2
Nanopore MinION read N ₅₀ ^a	9,407
Assembly size (bp)	3,753,827
Number of protein-coding genes	3,354
Number of tRNA genes	60
Number of rRNAs (5S, 23S, 16S)	6, 6, 6
G+C content (%) for contig 1 ^b	54.13
G+C content (%) for contig 2 ^b	52.74
Estimated genome completeness (%)	100
Estimated contamination (%)	1.29

^aDetermined with Flye 2.9.1.^bDetermined with CheckM v 1.0.18.

Taxonomy was determined with GTDB-tk 2.2.5 (14). Computing resources were supplied and maintained by the Ohio Supercomputer Center (15) and the DOE Systems Biology Knowledgebase (KBase) (16). Default parameters were used unless otherwise specified.

The assembled genome consists of a 3.75 Mb circular chromosome and a 5.6 kb circular plasmid (Table 1). GTDB-tk identified *Halomonas* sp. GFAJ-1 (GCF_002966495.1, 97.33% average nucleotide identity) as the nearest neighbor. The genome encodes complete Embden-Meyerhof-Parnas, Entner-Doudoroff, tricarboxylic acid, glyoxylate, and pentose phosphate pathways. The genome lacks a canonical Complex I but encodes a Na⁺-translocating NADH-quinone oxidoreductase and all other components required for oxidative phosphorylation. Phosphate acetyltransferase (*pta*) and acetate kinase (*ackA*) are identified in acetyl-CoA synthesis from acetate, supporting its ability to use acetate as an electron donor. All genes needed for dissimilatory nitrate reduction to ammonia are present (*napAB*, *nirBD*); however, M1 does not reduce nitrate *in vitro* (6). Sulfide:quinone oxidoreductase (*sqr*), sulfide dehydrogenase (*fccB*), thiosulfate dehydrogenase (*tsdA*), thiosulfate:cyanide sulfurtransferase (*tst*), and tetrathionate reductase subunit A (*ttrA*) are present and putatively involved in sulfur metabolism. Our genomic analysis of *Halomonas* sp. strain M1 provides a resource for continued study of the ecology of heterotrophic sulfur-oxidizing organisms in serpentinizing systems.

ACKNOWLEDGMENTS

This work was funded by NSF-EAR LowTemp Geochemistry Geobiology award 2025687 and NASA-Roses Exobiology Program grant number 80NSSC21K0482 awarded to A.R.R. J.D.S. was funded by an NSF Postdoctoral Research Fellowship NSF-OCE PRF 2126677.

AUTHOR AFFILIATION

¹Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA

AUTHOR ORCIDs

Annette R. Rowe <http://orcid.org/0000-0002-8761-6857>

Joshua D. Sackett <http://orcid.org/0000-0003-1689-8890>

FUNDING

Funder	Grant(s)	Author(s)
National Science Foundation (NSF)	NSF-EAR 2025687	Annette R. Rowe
National Aeronautics and Space Administration (NASA)	80NSSC21K0482	Annette R. Rowe
National Science Foundation (NSF)	NSF-OCE PRF 2126677	Joshua D. Sackett

DATA AVAILABILITY

The raw sequencing data were submitted to the NCBI Sequence Read Archive, and the genome assembly was submitted to GenBank under the accession numbers listed in Table 1.

REFERENCES

- Glombitsa C, Putman LI, Rempfert KR, Kubo MD, Schrenk MO, Templeton AS, Hoehler TM. 2021. Active microbial sulfate reduction in fluids of serpentizing peridotites of the continental subsurface. *Commun Earth Environ* 2. <https://doi.org/10.1038/s43247-021-00157-z>
- Menzel MD, Urai JL, Ukar E, Hirth G, Schwedt A, Kovács A, Kibkalo L, Kelemen PB. 2022. Ductile deformation during carbonation of serpentized peridotite. *Nat Commun* 13:3478. <https://doi.org/10.1038/s41467-022-31049-1>
- Howells AEG, Leong JAM, Ely T, Santana M, Robinson K, Esquivel - Elizondo S, Cox A, Poret - Peterson A, Krajmalnik - Brown R, Shock EL. 2022. Energetically informed niche models of hydrogenotrophs detected in sediments of serpentized fluids of the samail ophiolite of Oman. *JGR Biogeosciences* 127. <https://doi.org/10.1029/2021JG006317>
- Brazelton WJ, Schrenk MO, Kelley DS, Baross JA. 2006. Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. *Appl Environ Microbiol* 72:6257–6270. <https://doi.org/10.1128/AEM.00574-06>
- Sabuda MC, Brazelton WJ, Putman LI, McCollom TM, Hoehler TM, Kubo MDY, Cardace D, Schrenk MO. 2020. A dynamic microbial sulfur cycle in a serpentizing continental ophiolite. *Environ Microbiol* 22:2329–2345. <https://doi.org/10.1111/1462-2920.15006>
- Trutschel LR, Chadwick GL, Kruger B, Blank JG, Brazelton WJ, Dart ER, Rowe AR. 2022. Investigation of microbial metabolisms in an extremely high pH marine-like terrestrial serpentizing system: Ney Springs. *Sci Total Environ* 836:155492. <https://doi.org/10.1016/j.scitotenv.2022.155492>
- Rowe A, Trutschel L. 2021. Ney's spring media preparation. <https://doi.org/10.17504/protocols.io.bqjgmuwj>
- Wick RR, Menzel P. 2019. Filtlong: quality filtering tool for long reads. Available from: <https://github.com/rrwick/Filtlong>
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads using repeat graphs. *Nat Biotechnol* 37:540–546. <https://doi.org/10.1038/s41587-019-0072-8>
- Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25:1754–1760. <https://doi.org/10.1093/bioinformatics/btp324>
- Walker BJ, Abeel T, Shea T, Priest M, Abouelhail A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* 9:e112963. <https://doi.org/10.1371/journal.pone.0112963>
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 25:1043–1055. <https://doi.org/10.1101/gr.186072.114>
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res* 44:6614–6624. <https://doi.org/10.1093/nar/gkw569>
- Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. *Bioinformatics* 36:1925–1927. <https://doi.org/10.1093/bioinformatics/btz848>
- Ohio Supercomputer Center. 1987. Columbus OH. Available from: <http://osc.edu/ark:/19495/f5s1ph73>
- Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, Dehal P, Ware D, Perez F, Canon S, et al. 2018. KBase: the United States department of energy systems biology knowledgebase. *Nat Biotechnol* 36:566–569. <https://doi.org/10.1038/nbt.4163>